张一明
张一明,博士,副教授,2021年12月通过中山大学“百人计划”引进,以青年学术骨干身份加入电子与信息工程学院。于2019年6月毕业于电子科技大学,取得无线电物理专业理学博士学位,并获当年电子科技大学优秀毕业研究生荣誉。2019年7月至2021年10月于Aalborg University(奥尔堡大学,丹麦)电子系从事博士后研究工作,曾获得丹麦电子与电气工程师协会奖励。近年来以第一作者在IEEE TAP、 IEEE TMTT、 IEEE TVT、IEEE TCASII 等相关专业顶级/知名SCI期刊发表学术论文20余篇。
学术兼职和社会服务
学术兼职:
- 广东省重点领域研发计划项目验收评审专家
- The 25th IEEE GZ/HK AP/MTT Postgraduate Conference, Zhuhai, China, Technical Program Chair
- 2024 International Applied Computational Electromagnetics Society Symposium (ACES-China 2024), Xi’an, China, Session Chair
- The 24th IEEE GZ/HK AP/MTT Postgraduate Conference, Guangzhou, China, Publication Chair
- 2023 International Conference on Microwave and Millimeter Wave Technology (ICMMT2023), Qingdao, China, Session Chair
- 2022 IEEE Conference on Antenna Measurements & Applications (CAMA), Guangzhou, China, Publication Chair
学术期刊审稿人:
- IEEE Transactions on Microwave Theory and Techniques
- IEEE Transactions on Antennas and Propagation
- IEEE Transactions on Vehicular Technology
- IEEE Antennas and Wireless Propagation Letters
- IEEE Wireless Communications Letters
- IET Microwaves, Antennas & Propagation
- Electronics Letters等
教育经历
2015年9月至2019年6月 电子科技大学,博士
2011年9月至2014年6月 电子科技大学,硕士
2004年9月至2008年6月 华中师范大学,学士
研究方向
电磁场与微波技术方向,包括天线理论与设计、微波毫米波无源器件理论与研究,具体研究兴趣如下:
- 原子天线
- 太赫兹天线
- 大规模天线阵列
- 滤波天线
- 全双工天线与射频电路系统
- 复杂时变媒质与电磁场的交互作用机理
科研项目
- 2025-2028年,国家自然科学基金-面上项目,基于里德堡原子混频效应的电磁感知天线关键技术研究,49万元,主持。
- 2024-2024年,中央高校基本科研业务费-青年教师培育项目,里德堡原子天线的实时响应带宽拓展理论与阵列应用研究,10万元,主持。
- 2023-2025年,广东省自然科学基金-面上项目,基于涡旋电磁波的毫米波全双工天线阵列的基础理论与关键技术研究,10万元,主持。
- 2022-2024年,中山大学“百人计划”引进人才科研启动经费,30万元,主持。
- 2019-2022年,2019-2022年,企业横向项目,5G MMWave Decoupling Array (Huawei Technologies, Sweden),206万丹麦克朗(30万美元),参与。
- 2019-2022年,丹麦创新基金(Innovationsfonden),Modular Advanced Radio for Satellite Services-MARS2,4710万丹麦克朗(685万美元),参与。
代表性科研成果
Yiming Zhang - Google Scholar
主要期刊论文
2022年以来
[23] W. S. Tang, M. Li, Y. -M. Zhang and S. Y. Zheng, "Compact Dielectric Waveguide Filters With Controllable Transmission Zeros Using Dual External Coupling and Hybrid Ridge and Post," IEEE Transactions on Microwave Theory and Techniques, doi: 10.1109/TMTT.2024.3408646.
[22] Z. Z. Zheng, Y. -M. Zhang and S. Y. Zheng, "A Continuously Tunable Wideband Differential Phase Shifter With Filtering Function and Passband Alignment," IEEE Transactions on Microwave Theory and Techniques, doi: 10.1109/TMTT.2024.3419777.
[21] Y.-M. Zhang, X. Li, S. Zhang, and S.-Q. Xiao, “Decoupling Network Integrated With CSRR-Based Filtering Power Dividers for Antenna Arrays”, IEEE Transactions on Circuits and Systems-II: Express Briefs, accepted, 2023.
[20] Y.-M. Zhang, T.-Y. Lan, S. Zhang, and S.-Q. Xiao, “Harmonic-Suppressed Dual-Resonance Decoupling Network With Near-Zero Insertion Loss for Patch Antenna Arrays”, IEEE Transactions on Antennas and Propagation, accepted, 2023.
[19] Y.-M. Zhang, Ming Yao, and S. Zhang, “Wide-Band Decoupled Millimeter-Wave Antenna Array for Massive MIMO Systems”, IEEE Antennas and Wireless Propagation Letters, accepted, 2023.
[18] Y.-M. Zhang, and S. Zhang, “Two-Port Dual-Band Filtering Network and Its Application on Filtering Antennas”, IEEE Antennas and Wireless Propagation Letters, vol. 22, no. 4, pp. 679-683, Apr. 2023.
2021年及以前
[17] Y.-M. Zhang, and S. Zhang, “A novel aperture-loaded decoupling concept for patch antenna arrays”, IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 9, pp. 4272-4283, Sep. 2021.
[16] Y.-M. Zhang, Q.-C. Ye, G. F. Pedersen, and S. Zhang, “A simple decoupling network with filtering response for patch antenna arrays”, IEEE Transactions on Antennas and Propagation, vol. 69, no. 11, pp. 7427-7439, Nov. 2021.
[15] Y.-M. Zhang, and S. Zhang, “A side-loaded-metal decoupling method for 2N patch antenna arrays”, IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 5, pp. 668-672, May 2021.
[14] Y.-M. Zhang, S. Zhang, G.-W. Yang, and G. F. Pedersen, “A wideband filtering antenna array with harmonic suppression”, IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 10, pp. 4327-4339, Oct. 2020. (Best reading paper of the issue)
[13] Y.-M. Zhang, S. Zhang, Q.-C. Ye, and G. F. Pedersen, “Co-synthesis of a filtering antenna with harmonic suppression”, IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 10, pp. 1729-1733, Oct. 2020.
[12] Y.-M. Zhang and J.-L. Li, “A differential-series-fed dual-polarized traveling-wave array for full-duplex applications”, IEEE Transactions on Antennas and Propagation, vol. 68, no. 5, pp. 4097-4102, May 2020.
[11] Y.-M. Zhang, S. Zhang, J.-L. Li, and G. F. Pedersen, “A wavetrap-based decoupling method for 45°-polarized MIMO arrays”, IEEE Transactions on Antennas and Propagation, vol. 68, no. 3, pp. 2148-2157, Mar. 2020.
[10] Y.-M. Zhang, S. Zhang, J.-L. Li, and G. F. Pedersen, “A transmission-line-based decoupling method for MIMO antenna arrays”, IEEE Transactions on Antennas and Propagation, vol. 67, no. 5, pp. 3117-3131, May 2019.
[9] Y.-M. Zhang and J.-L. Li, “An orbital angular momentum-based array for in-band full-duplex communications”, IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 3, pp. 417-421, Mar. 2019.
[8] Y.-M. Zhang, S. Zhang, J.-L. Li, and G. F. Pedersen, “A dual-polarized linear antenna array with improved isolation using a slotline-based 180° hybrid for full-duplex applications”, IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 2, pp. 348-352, Feb. 2019.
[7] Y.-M. Zhang and J.-L. Li, “Analyses and full-duplex applications of circularly polarized OAM arrays using sequentially rotated configuration”, IEEE Transactions on Antennas and Propagation, vol. 66, no. 12, pp. 7010-7020, Dec. 2018.
[6] Y.-M. Zhang and J.-L. Li, “A dual-polarized antenna array with enhanced inter-port isolation for far-field wireless data and power transfer”, IEEE Transactions on Vehicular Technology, vol. 67, no. 11, pp. 10258-10267, Nov. 2018.
[5] Y.-M. Zhang and J.-L. Li, “Comments on “Radial uniform circular antenna array for dual-mode OAM communication””, IEEE Antennas and Wireless Propagation Letters, vol.17, no. 4, pp. 719-721, Apr. 2018.
[4] Y.-M. Zhang, J.-L. Li, J.-P. Wang, and B.-Z. Wang, “High temperature pyrolysis of toluene under electromagnetic fields at different frequencies”, ACS Sustainable Chemistry & Engineering, vol. 4, no. 9, pp. 4573-4581, 2016.
[3] Y.-M. Zhang, J.-L. Li, J.-P. Wang, X.-S. Yang, and B.-Z. Wang, “ReaxFF MDSs-based studies on gasification of glucose in supercritical water under microwave heating”, International Journal of Hydrogen Energy, vol. 41, no. 31, pp. 13390-13398, 2016.
[2] Y.-M. Zhang, J.-L. Li, J.-P. Wang, X.-S. Yang, W. Shao, S.-Q. Xiao, and B.-Z. Wang, “Research on epoxy resin decomposition under microwave heating by using ReaxFF molecular dynamics simulations”, Royal Society of Chemistry (RSC)-Advances, vol. 4, no. 33, pp. 17083-17090, 2014.
[1] Y.-M. Zhang, J.-L. Li, X.-Y. Wang, J.-P. Wang, W. Shao, S.-Q. Xiao, and B.-Z. Wang, “Research on pyrolysis of toluene under microwave heating by using ReaxFF molecular dynamics simulations”, Molecular Physics, vol. 112, no. 12, pp. 1724-1730, 2014.
主要会议论文/报告
[5] 张一明,基于槽线的多功能天线馈电电路,2024中国电子学会青年科学家论坛, 北京,中国, 2024. (特邀报告)
[4] Y.-M. Zhang, Slotline-Integrated Multi-Functional Antenna Feeding Networks, 2024 International Applied Computational Electromagnetics Society Symposium (ACES-China 2024), Xi’an, China, 2024.(特邀报告)
[3] Y.-M. Zhang, Decoupling of Patch Antenna Arrays at Feeding Layer, 2023 IEEE International Conference on Microwave and Millimeter Wave Technology(2023ICMMT), Chengdu, China, 2023. (特邀报告)
[2] Y.-M. Zhang, and S. Zhang, “A decoupling and matching network with harmonic suppression for MIMO antennas”, 2021 15th European Conference on Antennas and Propagation (EuCAP), Dusseldorf, Germany, Mar. 2021.
[1] Y.-M. Zhang, S. Zhang, and G. F. Pedersen, “A simple and wideband decoupling method for antenna array applications”, 2020 International Workshop on Antenna Technology (iWAT), Bucharest, Romania, Feb. 2020. (特邀报告)