吴进
吴进,中山大学“百人计划”副教授,博士生导师。分别于2011年和2014年在华中科技大学和新加坡南洋理工大学获得硕士和博士学位。博士毕业后在新加坡-麻省理工研究与技术联盟(SMART)做博士后从事传感器的研究。2017年加入中山大学电子与信息工程学院,为光电材料与技术国家重点实验室固定成员。从事智能传感与柔性电子研究,积极开展电子学、材料和生物医学领域的交叉研究。开发面向健康安全的柔性可拉伸、可穿戴、高性能、自修复的电子器件。发表SCI/EI论文140多篇,以通讯/第一作者在Nature Communications,Advanced Materials, Advanced Functional Materials, ACS Nano,Matter等期刊发表SCI论文70多篇,其中影响因子大于10的论文30多篇,论文被引用8000多次,ESI高被引论文/热点论文20多篇。自2022年起连续3年入选全球前2%顶尖科学家榜单,入选国际先进材料协会会士(IAAM Fellow)。申请/授权美国/中国发明专利>20项,其中成果转化9件,近年受邀请做国内外会议学术报告十几次,担任Nano-Micro Letters, Advanced Fiber Materials,SmartMat,SusMat等8个期刊的青年编委或副主编。主持国家自然科学基金面上、青年基金,广东省自然科学基金等科技项目多项。
招生学科方向:电子科学与技术、微电子、集成电路、生物医学等。
研究小组注重培养学生的创新思维、实验技能(电子器件设计、制备和性能表征测试、穿戴式设备开发和系统应用、电路与系统设计与制作等)和科技论文写作和表达能力,自入职以来培养十几名研究生毕业,指导研究生(吴子轩、丁琼玲、丁浩钧等)在Nature Communications等期刊发表多篇一区论文,获国家奖学金6人次。指导硕士生获得中山大学2022年度优秀硕士学位论文和优秀毕业生、本科生获得中山大学2023年度优秀本科毕业论文、研究生获全国大学生生物医学工程创新设计竞赛一等奖。
指导研究生获国家奖学金:吴子轩(2019),丁浩钧(2020),吴子轩(2022),梁誉苧(2022),王浩(2024),李健烨(2024)
研究小组每年招收博士研究生、硕士研究生多名、博士后,欢迎本科生加入体验研究项目。
目前有2026年入学硕士生(电子科学与技术/微电子/集成电路)招收指标,名额充沛,欢迎联系。
学术兼职和社会服务
担任Nature Communications, Advanced Materials, National Science Review,Matter, Advanced Functional Materials, ACS Nano,Nano Letters, Nano-Micro Letters, Advanced Science, Advanced Energy Materials等几十个SCI期刊的审稿人
国家自然科学基金通讯评审专家、广东省科学技术厅专家评审委员、浙江省自然科学基金专家评审委员
SCI期刊《Frontiers in Materials》副主编
SCI期刊《Nano-Micro Letters》(IF=26,一区)、《SusMat》(IF=28)、《Advanced Fiber Materials》(IF=16,一区)、《SmartMat》(IF=20)、《Science China Materials》(IF=8.1,Q1)、国产高起点新刊《Exploration》等6个期刊的青年编委
光电材料与技术国家重点实验室固定成员、广东省显示材料与技术重点实验室固定成员
英国皇家化学学会(RSC)前1%高被引作者
获Nano-Micro Letters ESI顶级论文奖
获2024年国际先进材料协会(IAAM)Advanced Materials Award
教育经历
2011-2014年,新加坡南洋理工大学,博士(师从霍峰蔚教授)
2008-2011年,华中科技大学,工学硕士(师从杨君友教授)
2004-2008年,武汉理工大学,工学学士
授课课程
本科生课程:
- 电路理论基础
- 微纳电子器件
- 电路理论基础实验
- 大学物理实验
研究方向
柔性/穿戴式/可拉伸电子器件、传感器、电路
电子工程,材料工程, 生物医学工程, 物理,化学等多学科交叉
软体凝胶电子器件
电子/离子皮肤,表皮电子,人机交互,软体机器人,自供电/自驱动电子器件
多模态传感器、无线传感器与系统集成
代表性科研成果
已发表SCI/EI论文140多篇,详情参见://www.researchgate.net/profile/Jin-Wu-4
论文被science, nature子刊,PNAS等重要学术期刊引用。(*为通讯作者)
2024年
1. Luo, L.; Wu, Z.; Ding, Q.; Wang, H.; Luo, Y.; Yu, J.; Guo, H.; Tao, K.*; Zhang, S.; Huo, F.*; Wu, J.* In-situ structural densification of hydrogel network and its interface with electrodes for high-performance multimodal artificial skin. ACS Nano 2024, //doi.org/10.1021/acsnano.4c02359 (影响因子:17.1, 一区)
2. Wang, W.; Yao, D.; Wang, H.; Ding, Q.; Luo, Y.; Ding, H.; Yu, J.; Zhang, H.; Tao, K.; Zhang, S.*; Huo, F.*; Wu, J.* A Breathable, Stretchable, and Self-calibrated Multimodal Electronic Skin Based on Hydrogel Microstructures for Wireless Wearables. Advanced Functional Materials 2024, 2316339, DOI: 10.1002/adfm.202316339 (影响因子:19, 一区)
3. Li, J.; Wang, H.; Luo, Y.; Zhou, Z.; Zhang, H.; Chen, H.; Tao, K.*; Liu, C.; Zeng, L.; Huo, F.*; Wu, J.* Design of AI-enhanced and hardware-supported multimodal e-skin for environmental object recognition and wireless toxic gas alarm. Nano-Micro Letters 2024, 16, 256.( 影响因子:26.6, 一区)
4. Li, J.; Luo, Y.; K. Tao*, Wu, J.*, Graphene-modified hydrogels for bioelectronic interface, Matter, 2024, DOI: 10.1016/j.matt.2024.10.003 (影响因子:17.3, 一区)
5. Yao, D.; Wang, W.; Wang, H.; Luo, Y.; Ding, H.; Gu, Y.; Wu, H.; Tao, K.*; Yang, B.; Pan, S.; Fu, J.; Huo, F. W.*; Wu, J.* Ultrasensitive and Breathable Hydrogel Fiber-based Strain Sensors Enabled by Customized Crack Design for Wireless Sign Language Recognition. Advanced Functional Materials 2024. (影响因子:19, 一区)
6.Lin, H.; Li, J.; Ding, Q.; Wang, H.; Luo, Y.; Yu, J.; Zhang, H.; Yang, B.-R.; Tao, K.*; Liu, C.*; Wu, J.*, Strain- and humidity-insensitive, stretchable hydrogel-based oxygen sensor with corrosion-free electrodes for wireless oxygen detection. Sensors and Actuators B: Chemical 2024, 414. DOI: 10.1016/j.snb.2024.135939 (IF=9.2,一区)
7. Wang, H.; Yao, D.; Luo, Y.; Zhong, B.; Gu, Y.; Wu, H.; Yang, B.-R.; Li, C.*; Tao, K.*; Wu, J.*, Ultrasensitive, Fast-Response, and Stretchable Temperature Microsensor Based on a Stable Encapsulated Organohydrogel Film for Wearable Applications. ACS Sensors 2024. DOI:10.1021/acssensors.4c02677
8.Hong, J.; Yao, D.; Wang, H.; Ding, Q.; Luo, Y.; Yu, J.; Zhang, H.; Zeng, L.; Yang, B.; Wang, B.*; Tao, K.*; Wu, J.*, Stretchable, stable and high-performance optoelectronic sensors based on hydrogel for ultraviolet imaging and wireless alarm. Science China Materials 2024. DOI: 10.1007/s40843-024-2879-2 (IF=8.1)
2023年
1. Huang, W.; Ding, Q.; Wang, H.; Wu, Z.; Luo, Y.; Shi, W.; Yang, L.; Liang, Y.; Liu, C.; Wu, J.* Design of stretchable and self-powered sensing device for portable and remote trace biomarkers detection. Nature communications 2023, 14 (1), 5221.(影响因子: 16.6, 一区)
2.Wang, H.; Ding, Q.; Luo, Y.; Wu, Z.; Yu, J.; Chen, H.; Zhou, Y.; Zhang, H.; Tao, K.*; Chen, X.; Fu, J.; Wu, J.* High-Performance Hydrogel Sensors Enabled Multimodal and Accurate Human–Machine Interaction System for Active Rehabilitation. Advanced Materials 2023, 2309868.DOI:10.1002/adma.202309868. (影响因子: 29.4, 一区)
3. Zhai, K.; Wang, H.; Ding, Q.; Wu, Z.; Ding, M.; Tao, K.*; Yang, B. R.; Xie, X.; Li, C.*; Wu, J.* High-Performance Strain Sensors Based on Organohydrogel Microsphere Film for Wearable Human-Computer Interfacing. Advanced Science 2023, 10, 2205632. (影响因子: 15.1,ESI热点论文)
4. Wu, Z.; Wang, H.; Ding, Q.; Tao, K.; Shi, W.; Liu, C.; Chen, J.; Wu, J.* A Self-Powered, Rechargeable, and Wearable Hydrogel Patch for Wireless Gas Detection with Extraordinary Performance. Advanced Functional Materials 2023, 2300046, DOI: 10.1002/adfm.202300046. (影响因子: 19,ESI高被引论文)
5. Wu, Z.; Ding, Q.; Wang, H.; Ye, J.; Luo, Y.; Tao, K.*; Liu, C.*; Wu, J.* A Humidity-resistant, Sensitive and Stretchable Hydrogel-based Oxygen Sensor for Wireless Health and Environmental Monitoring. Advanced Functional Materials 2023, 2308280 (SCI,IF:19, 一区)
6. Tao, K.; Yu, J.; Zhang, J.; Bao, A.; Hu, H.; Ye, T.; Ding, Q.; Wang, Y.; Lin, H.; Wu, J.*; Chang, H.; Zhang, H.*; Yuan, W*. Deep-Learning Enabled Active Biomimetic Multifunctional Hydrogel Electronic Skin. ACS Nano 2023, DOI: 10.1021/acsnano.3c05253. (影响因子: 17.1,ESI高被引论文)
7. Li, J.; Ding, Q.; Wang, H.; Wu, Z.; Gui, X.; Li, C.; Hu, N.*; Tao, K.*; Wu, J.* Engineering Smart Composite Hydrogels for Wearable Health Monitoring. Nano-Micro Letters 2023, 15 (1), 105, DOI: 10.1007/s40820-023-01079-5. (影响因子: 26.6,ESI高被引论文)
8. Luo, Y.; Li, J.; Ding, Q.; Wang, H.; Liu, C.; Wu, J.* Functionalized Hydrogel-Based Wearable Gas and Humidity Sensors. Nano-Micro Letters 2023, 15 (1), 136. (影响因子: 26.6,ESI高被引论文)
9. Ding, Q.; Zhou, Z.; Wang, H.; Wu, Z.; Tao, K.; Yang, B.-R.; Xie, X.; Fu, J.; Wu, J.* Self-healable, recyclable, ultrastretchable and high-performance NO2 sensor based on organohydrogel for wireless, room temperature and below operation. SmartMat 2023;4:e1141. doi:10.1002/smm2.1141,入选SmartMat期刊2022年推特关注度前五文章. (影响因子: 20.4)
10. Ding, Q.; Wang, H.; Zhou, Z.; Wu, Z.; Tao, K.; Gui, X.; Liu, C.; Shi, W.; Wu, J. * Stretchable, Self-Healable, and Breathable Biomimetic Iontronics with Superior Humidity Sensing Performance for Wireless Respiration Monitoring. SmartMat 2023, 4, e1147. doi:10.1002/smm2.1147. (影响因子: 20.4)
11. Yang, J.; Rong, L.; Huang, W.; Wu, Z.; Ding, Q.; Zhang, H.; Lin, Y.; Li, F.; Li, C.; Yang, B. R.*; Tao, K.*; Wu, J.* Flame‐retardant, flexible, and breathable smart humidity sensing fabrics based on hydrogels for respiratory monitoring and non‐contact sensing. View 2023, 20220060. (影响因子: 8.6).
12. Tao, K.*; Zhao, Z.; Mao, X.; Shen, W.; Qiu, C.; Qi, H.; Ye, T.; Zhang, X.; Wu, J.*; Fan, K.*; Chang, H.; Yuan, W.* Direct-current, long-lasting and highly efficient electret energy harvesting from ultra-low-frequency motions using toothed clutch mechanism. Nano Energy 2023, 105, 107998. (影响因子: 17.6)
13. Wang, H.; Zou, Q.; Xiang, Y.; Yang, J.; Xu, Z.; Yang, W.; Wu, Y.; Wu, J.*; Liu, D.; Zhang, D.*; Hu, N.* A smart tablet-phone-based system using dynamic light modulation for highly sensitive colorimetric biosensing. Talanta 2023, 252, 123862.(影响因子: 6.1)
14. Lyu, B.; Zhou, H.; Gao, Y.; Mao, X.; Li, F.; Zhang, J.; Nie, D.; Zeng, W.; Lu, Y.; Wu, J.*; Yang, Z.*; Tao, K.* Constructing origami power generator from one piece of electret thin film and application in AI-enabled transmission line vibration monitoring. Microsystems & Nanoengineering 2023, 9 (1), 101. DOI: 10.1038/s41378-023-00572-6. (影响因子: 7.9)
2022年
1. Liang, Y.; Wu, Z.; Wei, Y.; Ding, Q.; Zilberman, M.; Tao, K.; Xie, X.; Wu, J.* Self-healing, Self-adhesive and Stable Organohydrogel based Stretchable Oxygen Sensor with High-performance at Room Temperature. Nano-Micro Letters (2022) 14:52 DOI: 10.1007/s40820-021-00787-0. (影响因子: 23.6,ESI高被引论文)
2. Liang, Y.; Ding, Q.; Wang, H.; Wu, Z.; Li, J.; Li, Z.; Tao, K.; Gui, X.; Wu, J.* Humidity Sensing of Stretchable and Transparent Hydrogel Films for Wireless Respiration Monitoring. Nano-Micro Letters 2022, 14:183. DOI:10.1007/s40820-022-00934-1 (影响因子: 23.6)
3. Ding, Q.; Wu, Z.; Tao, K.; Wei, Y.; Wang, W.; Yang, B.-r.; Xie, X.; Wu, J.* Environment Tolerant, Adaptable and Stretchable Organohydrogel: Preparation, Optimization, and Applications. Materials Horizons 2022, 9, 1356-1386. DOI: 10.1039/D1MH01871J. (影响因子: 15.7,ESI高被引论文)
4. Tao, K.; Chen, Z.; Yu, J.; Zeng, H.; Wu, J.*; Wu, Z.; Jia, Q.; Li, P.; Fu, Y.; Chang, H.; Yuan, W., Ultra-Sensitive, Deformable and Transparent Triboelectric Tactile Sensor based on Micro-Pyramid Patterned Ionic Hydrogel for Interactive Human-Machine Interfaces, Advanced Science 2022, 9(10),2104168. DOI: 10.1002/advs.202104168. (影响因子: 17.5,ESI高被引论文)
5. Ding, H.; Wu, Z.; Wang, H.; Zhou, Z.; Wei, Y.; Tao, K.; Xie, X.; Wu, J.* Ultrastretchable, High-performance, and Crosstalk-free Proximity and Pressure Bimodal Sensor Based on Ionic Hydrogel Fibers for Human-Machine Interfaces. Materials Horizons 2022, 9, 1935–1946. DOI: 10.1039/d2mh00281g (影响因子: 15.7,ESI高被引论文, 2022年Materials Horizons Most Popular Article)
6. Wei, Y.; Wang, H.; Ding, Q.; Wu, Z.; Zhang, H.; Tao, K.; Xie, X.; Wu, J.* Hydrogel- and Organohydrogel-based Stretchable, Ultrasensitive, Transparent, Room-temperature and Real-time NO2 Sensors and the Mechanism. Materials Horizons 2022, 9, 1921–1934. DOI: 10.1039/D2MH00284A. (影响因子: 15.7,ESI高被引论文)
7. Lin, Y.; Wu, Z.; Li, C.; Ding, Q.; Tao, K.; Zhai, K.; Chen, M.; Zilberman, M.; Xie, X.; Wu, J.* Deformable, Transparent, High-performance, Room-Temperature Oxygen Sensors Based on Ion-Conductive, Environment-Tolerant and Green Organohydrogels. Ecomat 2022, e12220, DOI:10.1002/eom2.12220 (影响因子: 12.2)
8. Wu, Z.; Ding, Q.; Li, Z.; Zhou, Z.; Luo, L.; Tao, K.; Xie, X.; Wu, J.* Ultrasensitive, stretchable, and transparent humidity sensor based on ionconductive double-network hydrogel thin-films. Science China Materials 2022, 65(9), 2540–2552, DOI:10.1007/s40843-021-2022-1 (影响因子: 8.6)
9. Wu, J.*; Huang, W.; Wu, Z.; Yang, X.; Kottapalli, A. G. P.; Xie, X.; Zhou, Y.*; Tao, K*. Hydrophobic and Stable Graphene-Modified Organohydrogel Based Sensitive, Stretchable, and Self-Healable Strain Sensors for Human-Motion Detection in Various Scenarios. ACS Materials Letters 2022, 4, 1616-1629, DOI: 10.1021/acsmaterialslett.2c00230. (影响因子: 11.2)
10. Chen, Z.; Yu, J.; Zhang, X.; Zeng, H.; Li, Y.*; Wu, J.*; Tao, K.* A button switch inspired duplex hydrogel sensor based on both triboelectric and piezoresistive effects for detecting dynamic and static pressure. Nanotechnology and Precision Engineering 2022, 5 (2), 023002, DOI: 10.1063/10.0010120.
2021年
1. Wu, Z.; Yang, X.; Wu, J.* Conductive Hydrogel- and Organohydrogel-Based Stretchable Sensors. ACS Applied Materials & Interfaces 2021, 13, 2128−2144. (影响因子: 10.4,ESI高被引论文,热点论文)
2. Wu, Z.; Rong, L.; Yang, J.; Wei, Y.; Tao, K.; Zhou, Y.; Yang, B.-R.; Xie, X.; Wu, J.* Ion-Conductive Hydrogel based Stretchable, Self-healing and Transparent NO2 Sensor with High Sensitivity and Selectivity at Room Temperature. Small 2021, 17, 2104997. DOI: 10.1002/smll.202104997. (影响因子: 15.2)
3. Tao, K.*; Zhao, Z.; Yang, Y.; Wu, J.*; Li, Y.; Fan, K.; Fu, Y.; Chang, H.; Yuan, W.* Development of bipolar-charged electret rotatory power generator and application in self-powered intelligent thrust bearing. Nano Energy 2021, 90, 106491. (影响因子: 19)
4. Wu, Z.; Ding, H.; Tao, K.; Wei, Y.; Gui, X.; Shi, W.; Xie, X.; Wu, J.* Ultrasensitive, Stretchable, and Fast-Response Temperature Sensors Based on Hydrogel Films for Wearable Applications. ACS Applied Materials & Interfaces 2021, 13, 21854–21864. (影响因子: 10.4,ESI高被引论文)
5. Wu, Z.; Shi, W.; Ding, H.; Zhong, B.; Huang, W.; Zhou, Y.; Gui, X.; Xie, X.; Wu, J.* Ultrastable, Stretchable, High-conductive and Transparent Hydrogels Enabled by Salt-Percolation for High-performance Temperature and Strain Sensing. Journal of Materials Chemistry C 2021, 9, 13668-13679. DOI: 10.1039/D1TC02506F. (影响因子: 8.1, Journal of Materials Chemistry C HOT Papers,2021 Journal of Materials Chemistry C most popular articles)
6. Wu, J.*; Liang, Y.; Zhou, Z.; Wu, Z.; Ding, H.; Huang, W.; Tao, K.*; Shi, W.*; Yang, B.-R.; Xie, X. Three-Dimensional Gold Nanoparticles-Modified Graphene Hydrogel for High-Sensitive NO2 and NH3 Detection with Enhanced Resistance to Humidity. Sensors and Actuators B: Chemical. 2021, 344, 130259. (影响因子: 9.2)
7. Wu, J.*; Huang, W.; Liang, Y.; Wu, Z.; Zhong, B.; Zhou, Z.; Ye, J.; Tao, K.*; Zhou, Y.; Xie, X. Self-Calibrated, Sensitive and Flexible Temperature Sensor based on 3D Chemically Modified Graphene Hydrogel. Advanced Electronic Materials 2021, 7, 2001084. (影响因子:7.6)
8. Chen, Z.; Yu, J.; Zeng, H.; Chen, Z.; Tao, K.*; Wu, J.*; Li, Y.* An Electret/Hydrogel-Based Tactile Sensor Boosted by Micro-Patterned and Electrostatic Promoting Methods with Flexibility and Wide-Temperature Tolerance. Micromachines 2021, 12, 1462.
2020年
1. Wu, J.*; Wu, Z.; Wei, Y.; Ding, H.; Huang, W.; Gui, X.; Shi, W.; Shen, Y.; Tao, K.*; Xie, X. Ultrasensitive and Stretchable Temperature Sensors Based on Thermally Stable and Self-Healing Organohydrogels. ACS Applied Materials & Interfaces 2020, 12, 19069-19079. (影响因子: 10.4,ESI高被引论文)
2. Wu, J.*; Wu, Z.; Huang, W.; Yang, X.; Liang, Y.; Tao, K.; Yang, B.-R.; Shi, W.*; Xie, X. Stretchable, Stable and Room-Temperature Gas Sensors Based on Self-Healing and Transparent Organohydrogel. ACS Applied Materials & Interfaces 2020, 12, 52070−52081. (影响因子: 10.4)
3. Ding, H.; Wei, Y.; Wu, Z.; Tao, K.; Ding, M.; Xie, X.; Wu, J.* Recent Advances in Gas and Humidity Sensors Based on 3D Structured and Porous Graphene and Its Derivatives. ACS Materials Letters 2020, 2, 1381-1411. (影响因子: 11.2)
4. Wu, J.*; Wu, Z.; Ding, H.; Wei, Y.; Huang, W.; Yang, X.; Li, Z.; Qiu, L.*; Wang, X*. Three-Dimensional Graphene Hydrogel Decorated with SnO2 for High-Performance NO2 Sensing with Enhanced Immunity to Humidity. ACS Applied Materials & Interfaces 2020, 12, 2634-2643. (影响因子: 10.4)
5. Wu, J.*; Ding, H.; Chen, Y.; Wei, Y.; Wu, Z.; Wang, N.; Xie, X.; Shi, W.*; Wang, X.* Revealing the Role of Surface Co-modification in Boosting the Gas Sensing Performance of Graphene Using Experimental and Theoretical Evidences. Sensors and Actuators B: Chemical 2020, 316, 128162. (影响因子: 9.2)
6. Tao, K.*; Yi, H.; Yang, Y.; Chang, H.; Wu, J.*; Tang, L.; Yang, Z.; Wang, N.; Hu, L.; Fu, Y.; Miao, J.; Yuan, W.* Origami-inspired electret-based triboelectric generator for biomechanical and ocean wave energy harvesting. Nano Energy 2020, 67, 104197. (影响因子: 19,ESI高被引论文)
7. Wu, J.*; Wu, Z.; Ding, H.; Wei, Y.; Huang, W.; Yang, X.; Li, Z.; Qiu, L.*; Wang, X.* Flexible, 3D SnS2/Reduced Graphene Oxide Heterostructured NO2 Sensor. Sensors and Actuators B: Chemical 2020, 305, 127445. (影响因子: 9.2,ESI高被引论文)
8 Wu, J.*; Yang, x.; Ding, H.; Wei, Y.; Wu, Z.; Tao, K.*; Yang, B.-R.; Liu, C.; Wang, X.; Feng, S.*; Xie, X. Ultrahigh Sensitivity of Flexible Thermistors Based on 3D Porous Graphene Characterized by Imbedded Microheaters. Advanced Electronic Materials 2020, 6, 2000451. (影响因子=7.6)
9. Han, S.; Liu, C.; Lin, X.; Zheng, J.; Wu, J.*; Liu, C.* Dual Conductive Network Hydrogel for a Highly Conductive, Self-Healing, Anti-Freezing, and Non-Drying Strain Sensor. ACS Applied Polymer Materials 2020, 2, 996-1005. (影响因子: 4.8,ESI高被引论文)
10. Wu, J.*; Wei, Y.; Ding, H.; Wu, Z.; Yang, X.; Li, Z.; Huang, W.; Xie, X.; Tao, K.*; Wang, X.* Green Synthesis of 3D Chemically Functionalized Graphene Hydrogel for High-Performance NH3 and NO2 Detection at Room Temperature. ACS Applied Materials & Interfaces 2020, 12, 20623-20632. (影响因子: 10.4)
11. Tao, K.*; Yi, H.; Yang, Y.; Tang, L.; Yang, Z.; Wu, J.*; Chang, H.; Yuan, W.* Miura-origami-inspired electret/triboelectric power generator for wearable energy harvesting with water-proof capability. Microsystems & Nanoengineering 2020, 6, 56. (影响因子: 8)
2019年
1. Wu, J.*; Wu, Z. X.; Xu, H. H.; Wu, Q.; Liu, C.; Yang, B. R.; Gui, X. Q.; Xie, X.; Tao, K.*; Shen, Y.*; Miao, J. M.; Norford, L. K. An intrinsically stretchable humidity sensor based on anti-drying, self-healing and transparent organohydrogels. Materials Horizons 2019, 6, 595-603. (影响因子:15.7, ESI高被引论文, 2019 Material Horizon Most Popular Article,被引300+)
2. Wu, J.*; Wu, Z. X.; Han, S. J.; Yang, B. R.; Gui, X. C.; Tao, K.*; Liu, C.*; Miao, J. M.; Norford, L. K. Extremely Deformable, Transparent and High-Performance Gas Sensor Based on Ionic Conductive Hydrogel. ACS Applied Materials & Interfaces 2019, 11, 2364-2373. (影响因子: 10.4, ESI高被引论文)
3. Wu, J.*, Wu, Z.; Lu, X.; Han, S.; Yang, B.-R.; Gui, X.; Tao, K.*; Miao, J.; Liu, C.* Ultrastretchable and Stable Strain Sensors Based on Anti-freezing and Self-healing Ionic Organohydrogels for Human Motion Monitoring. ACS Applied Materials & Interfaces 2019, 11, 9405-9414. (影响因子: 10.4, ESI高被引论文,被引300)
4. Huang, K.#; Wu, J. #; Chen, Z.; Xu, H.; Wu, Z.; Tao, K.; Yang, T.; Wu, Q.; Zhou, H.; Huang, B.; Chen, H.; Chen, J.; Liu, C.* Nanostructured High-Performance Thin-Film Transistors and Phototransistors Fabricated by a High-Yield and Versatile Near-Field Nanolithography Strategy. ACS Nano 2019, 13, 6618−6630. (影响因子:18,#并列第一作者)
5. Wu, J.*; Wu, Z.; Ding, H.; Wei, Y.; Yang, X.; Li, Z.; Yang, B.-R.; Liu, C.; Qiu, L.*; Wang, X.*, Multifunctional and High-Sensitive Sensor Capable of Detecting Humidity, Temperature, and Flow Stimuli Using an Integrated Microheater. ACS Applied Materials & Interfaces, 2019, 11, 43383-43392. (影响因子: 10.4)
6. Wu, J.*; Wu, Z.; Ding, H.; Yang, X.; Wei, Y.; Xiao, M.; Yang, Z.; Yang, B.-R.; Liu, C.; Lu, X.; Qiu, L.*; Wang, X.* Three-Dimensional-Structured Boron- and Nitrogen-Doped Graphene Hydrogel Enabling High-Sensitivity NO2 Detection at Room Temperature. ACS Sensors 2019, 4, 1889-1898. (影响因子: 9.6)
7. Wu, J.*; Sun, Y.-M.*; Wu, Z.; Li, X.; Wang, N.; Tao, K.; Wang, G. P.* Carbon Nanocoil-Based Fast-Response and Flexible Humidity Sensor for Multifunctional Applications. ACS Applied Materials & Interfaces 2019, 11, 4242–4251. (影响因子: 10.4,ESI高被引论文)
8. Han, S.; Liu, C.; Huang, Z.; Zheng, J.; Xu, H.*; Chu, S.; Wu, J.*; Liu, C.* High-Performance Pressure Sensors Based on 3D Microstructure Fabricated by a Facile Transfer Technology. Advanced Materials Technologies 2019, 4, 1800640. (影响因子: 8.9)
9. Wu, J.*; Wu, Z.; Tao, K.; Liu, C.; Yang, B.-R.; Xie, X.; Lu, X.* Rapid-response, reversible and flexible humidity sensing platform using a hydrophobic and porous substrate. Journal of Materials Chemistry B 2019, 7, 2063-2073. (影响因子: 7.6)
10. Tao, K.; Yi, H.; Tang, L.; Wu, J.*; Wang, P.; Wang, N.; Hu, L.; Fu, Y.; Miao, J.*; Chang, H.* Piezoelectric ZnO thin films for 2DOF MEMS vibrational energy harvesting. Surface and Coatings Technology 2019, 359, 289-295. (影响因子: 4.9,ESI高被引论文)
2018年
1. Wu, J. #*; Li, Z.#; Liu, C.*; Tao, K.; Xie, X.; Khor, K. A.; Miao, J.*; Norford, L. K. 3D superhydrophobic reduced graphene oxide for activated NO2 sensing with enhanced immunity to humidity. Journal of Materials Chemistry A 2018, 6, 478-488. (影响因子: 14.5)
2. Wu, J.; Han, S. J.; Yang, T. Z.; Li, Z.; Wu, Z. X.; Gui, X. Q.; Tao, K.*; Miao, J.; Norford, L. K.; Liu, C.*; Huo, F. W. Highly Stretchable and Transparent Thermistor Based on Self-Healing Double Network Hydrogel. ACS Applied Materials & Interfaces 2018, 10, 19097-19105. (影响因子: 10.4)
3. Tao, K.; Tang, L. H.*; Wu, J.*; Lye, S. W.; Chang, H. L.; Miao, J. M. Investigation of Multimodal Electret-Based MEMS Energy Harvester With Impact-Induced Nonlinearity. Journal of Microelectromechanical Systems 2018, 27, 276-288. (ESI热点论文,高被引论文,获美国机械工程协会(ASME)智能材料与结构分会2019年度最佳论文奖,并入选2018年中国百篇最具影响力国际学术论文)
4. Wu, J.; Feng, S.; Li, Z.; Tao, K.; Chu, J.*; Miao, J.*; Norford, L. K. Boosted sensitivity of graphene gas sensor via nanoporous thin film structures. Sensors and Actuators B: Chemical 2018, 255, 1805-1813. (影响因子: 9.2)
5. Liu, C.; Han, S.; Xu, H.; Wu, J.*; Liu, C.* Multifunctional Highly Sensitive Multiscale Stretchable Strain Sensor Based on a Graphene/Glycerol-KCl Synergistic Conductive Network. ACS Applied Materials & Interfaces 2018, 10, 31716-31724. (影响因子: 10.4)
2017年以前
1. Wu, J.#; Feng, S.#*; Wei, X.; Shen, J.; Lu, W.; Shi, H.; Tao, K.; Lu, S.; Sun, T.; Yu, L.; Du, C.; Miao, J.*; Norford, L. K. Facile Synthesis of 3D Graphene Flowers for Ultrasensitive and Highly Reversible Gas Sensing. Advanced Functional Materials 2016, 26, 7462-7469. (影响因子:19.9)
2. Wu, J.; Tao, K.; Guo, Y.; Li, Z.; Wang, X.; Luo, Z.; Feng, S.*; Du, C.; Chen, D.; Miao, J.*; Norford, L. K. 3D Chemically Modified Graphene Hydrogel for Fast, Highly Sensitive, and Selective Gas Sensor. Advanced Science 2016, 3, 1600319. (影响因子:17.5)
3. Wu, J.; Tao, K.; Zhang, J.; Guo, Y.; Miao, J.*; Norford, L. K. Chemically functionalized 3D graphene hydrogel for high performance gas sensing. Journal of Materials Chemistry A 2016, 4, 8130-8140. (影响因子:14.5)
4. Wu, J.; Tao, K.; Miao, J.; Norford, L. K., Improved Selectivity and Sensitivity of Gas Sensing Using 3D Reduced Graphene Oxide Hydrogel with Integrated Microheater. ACS Applied Materials & Interfaces 2015, 7, 27502-27510. (影响因子: 10.4)
5. Jin Wu, Kai Tao, Jianmin Miao* and Leslie K. Norford, Enhanced Gas Sensing by 3D Water Steamed Graphene Hydrogel, Solid State Electronics, 2017, 138(2017) 101-107.
6. Jin Wu, Chihao Liow, Kai Tao, Yuanyuan Guo, Xiaotian Wang and Jianmin Miao,* Large-Area Sub-wavelength Optical Patterning via Long-Range Ordered Polymer Lens Array. ACS Applied Materials & Interfaces 2016, 8, 16368-16378. (影响因子: 10.4)
7. Jin Wu, Kai Tao, Jianmin Miao*, Production of centimeter-scale sub-wavelength nanopatterns by controlling the light path of adhesive photomask. Journal of Materials Chemistry C, 2015, 3, 6796-6808. (影响因子: 8.1)
8. Jin Wu, Jianmin Miao*, Production of Centimeter-Scale Gradient Patterns by Graded Elastomeric Tip Array. ACS Applied Materials & Interfaces 2015, 7, 6991-7000. (影响因子: 10.4)
9. Jin Wu, Xiaoli Zan, Shaozhou Li, Yayuan Liu, Chenlong Cui, Binghua Zou, Weina Zhang, Hongbo Xu, Hongwei Duan, Danbi Tian, Wei Huang, Fengwei Huo*, In situ synthesis of large-area single sub-10 nm nanoparticle arrays by polymer pen lithography. Nanoscale 2014, 6, 749-752. (IF=8.3)
10. Jin Wu, Yayuan Liu, Yuanyuan Guo, Shuanglong Feng, Binghua Zou, Hui Mao, Cheng-han Yu, Danbi Tian, Wei Huang, and Fengwei Huo*, Centimeter-scale sub-wavelength photolithography using metal-coated elastomeric photomasks with modulated light intensity at the oblique sidewalls. Langmuir, 2015, 31, 5005-5013. (IF=3.683)
11. Jin Wu, Cheng-han Yu, Shaozhou Li, Binghua Zou, Yayuan Liu, Xiaoqun Zhu, Yuanyuan Guo, Hongbo Xu, Weina Zhang, Liping Zhang, Bin Liu, Danbi Tian, Wei Huang, Michael P. Sheetz and Fengwei Huo*, Parallel Near-field Photolithography with Metal-coated Elastomeric Masks. Langmuir, 2015, 31, 1210-1217. (IF=3.683)
12. J. Wu, J. Y. Yang,* H. Zhang, J. S. Zhang, S. L. Feng, M. Liu, J. Y. Peng, W. Zhu, T. Zou, Fabrication of Ag–Sn–Sb–Te based thermoelectric materials by MA-PAS and their properties. Journal of Alloys and Compounds 2010, 507, 167-171. (IF=6)
13. J. Wu, J.-Y. Yang,* J.-S. Zhang, G. Li, J.-Y. Peng, Y. Xiao, L.-W. Fu, Q.-Z. Liu, Thermoelectric Properties of Sn-Substituted AgPbmSbTem+2 via the Route of Mechanical Alloying and Plasma-Activated Sintering. Journal of Electronic Materials 2012, 41, 1100-1104.
14. R. C. Luo, J. Wu, N. Dinh, and C. H. Chen, Gradient Porous Elastic Hydrogels with Shape-memory Property and Anisotropic Responses for Programmable Locomotion, Advanced Functional Materials, 2015, 25, 7272-7279.
部分授权专利:
1. Fengwei Huo (霍峰蔚); Jin Wu (吴进) ; Apparatus and Methods for Investigating a Sample Surface, 2019-1-1, 美国, 专利号:US 10,168,353 B2
2. 吴进; 吴子轩; 气体传感器及其应用、设备和气体传感器的制备方法, 授权日:2020-8-25,中国, 专利号:ZL201811614104.6.
3. 吴进; 吴子轩; 湿度传感器及其应用、设备和湿度传感器的制备方法, 授权日:2020-8-25, 中国, 专利号:ZL201811614121.X.
4. 吴进; 刘川; 李敏敏; 一种具有微纳图形结构的掩膜板制作方法和纳米光刻方法, 授权日:2021-1-22,中国, 专利号:ZL201810202020.5
5. 吴进; 吴子轩; 一种基于薄膜的电容式温度传感器及其制作方法, 申请日:2020-5-22, 中国, 专利号:ZL202010438026.X.
6. 吴进; 杨醒; 吴子轩;一种碳材料复合凝胶及其制备方法和应用, 申请日:2020-6-8, 中国, 专利号:ZL202110636459.0
7. 吴进; 黄文轩; 吴子轩, 光学成像系统、方法、装置及存储介质, 授权日:2020.9.29, 中国, 专利号:ZL201811365902.X
8. 吴进,吴子轩,容莉敏,杨靖澜,韦耀铭; 一种可伸缩NO2气体传感器及其制备方法和应用; 中国,专利号:ZL2021109777129;申请日:2021-08-24;
9. 吴进,梁誉苧,吴子轩,周子敬;一种双网络有机凝胶及其制备方法和应用,申请日:2021-08-04, 中国, 申请号:2021108935604
10. 吴进,黄文溪,韦耀铭;一种基于凝胶的透明可拉伸自供电硫化氢气体传感器;中国,申请号:2022109910967,专利号:ZL202210991096.7
Jin Wu
Associate Professor
State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
Education Background
2011-2014 Nanyang Technological University (with Prof. Fengwei Huo), Singapore PhD
2008-2011 Huazhong University of Science and Technology (with Prof. Junyou Yang), China Master
2004-2008 Wuhan University of Technology, China Bachelor
Professional
2017-now School of Electronics and Information Technology, Sun Yat-sen University, Associate Professor
2014-2017 Nanyang Technological University, Postdoctoral Research Fellow, Singapore-MIT Alliance for Research and Technology (SMART) project, MIT advisor: Prof. Leslie Keith Norford,Singapore advisor: Prof. Jianmin Miao
Research Interest
Flexible/stretchable/wearable electronic devices
gel-based electronics
Electron/ionic skin
Gas/humidity sensors, temperature/strain/pressure sensors, multifunctional sensor and integrated system,for biomedical applications and environmental monitoring